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ABSTRACT
Ergodic type theorems for automorphisms of finite von Neumann alge-
bras are considered. Neveu decomposition was employed in order to prove

stochastical convergence.

Introduction and notations

This paper is devoted to the presentation of some results concerning ergodic
type theorems in finite von Neumann algebras. The first results in this field
were obtained by Sinai and Anshelevich [14] and Lance [11]. Development of the
subject is reflected in the monographs of Jajte [5] and Krengel [10].

The notion of a weakly wandering set (in a commutative context) was intro-
duced by Hajian and Kakutani [7] in order to establish conditions which are
equivalent to the existence of finite invariant measures. The non-commutative
case was considered by Jajte [6].

In section 1 we consider Neveu decomposition which gives a characterization of

the existence of the invariant measure in terms of a weakly wandering operator.
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Section 2 is devoted to a representation of the Krengel stochastic ergodic the-
orem for the action of an automorphism on finite von Neumann algebra [3].

In section 3 we consider a multiparametric version of the stochastic ergodic the-
orem. In section 4, the multiparametric superadditive stochastic ergodic theorem
is considered.

We use the following notations: M is a von Neumann algebra with finite tracial
state 7, M, is a predual of M, and M* is the Banach dual space to M; I denotes
the unit of M. For p € M,, the support of p will be denoted by S(p). Let a
be an automorphism of algebra M, and let a, be an operator acting in M,, to
which « is conjugated. By A™ (A*") we denote the Cesaro average of o (a*).

1. Neveu decomposition and the weakly wandering operator

Definition 1.1: A positive operator h < [ is said to be a weakly wandering
operator, if

|A™h])| = 0  when n — oo.
The following theorem is valid.

THEOREM 1.1 (see [7], [6], [10]): Let M and a be as defined above. The following
conditions are equivalent:

(i) There exists an a.-invariant normal state p on M with support S(p) = E
such that the support of every a.-invariant normal state p is less than or
equal to E: S(p) < E.

(ii) E is the maximal projection such that for every projector P < E, P € M,

inf 7(a™P) > 0.

(iii) There exists a weakly wandering operator hg € M, with support S(ho) =
I — E such that the support of every weakly wandering operator is less than
orequal tol - E.

Proof: (i) = (ii). Let e < F and pe) = ¢ > 0. Since the set
{v:v < A, v € M}, A =1,2..} is dense in norm in M}, then there ex-
ist A > 1 and v € MJ, such that v < Ar, [|[p— v]|1 < ¢/2. So

r(ee) > A7 w(ame) > A7 (p(ame) ~ |lp—v|)1) > A7 - g/2 > 0.



Vol. 90, 1995 ERGODIC TYPE THEOREMS 405

Let (i) hold and E; be a projection such that not E > E; and for every P < E;
the following relation is valid:

inf 7(a™P) > 0.

n>0
Let us consider the sequence {A**7}52,; C M*. By the Banach-Alaogly theorem

M} is compact with respect to o(M*, M) topology; we denote the limit point of
{A*™7}8° | by vo, vo € M{. From A*"r > 0 it follows that vy > 0. Moreover,

|4 — A (" 7)]|

IA

2

—lirll,

so the limit state vg is o* invariant. Let vy = g, + Vs be a Takesaki decom-
position [15] of state vy on normal and singular components. We show that
the normal component is non-zero. Otherwise, for every projector g there exists
projector p < g, p # 0 with vy, (P) = 0 [15] or inf,>o(A**7)(P) = 0, but this
contradicts the assumption inf,>o 7(a"P) > 0. Besides, the normal component
is v, invariant. From a*M, C M, it follows that

0[*1/0 = O‘*’/O'n + (a*VOs)n + (a*VOs)sa

where (a*vps)n(s) is the normal (singular) component of functional a*vg,. Since
« is an automorphism, so (a*vgs)s = a*vps and a*vg, = o, = Vo, By the
choice of projector E; we have S(vy,) > E; since v, (P) > inf,>o(A*7)(p") >
inf,>o T(a"p’) > 0, where p’ < P < Eq, vo,(p') =0, p’ # 0, or vy, is faithful on
E;. This contradicts ().

(if) = (i) It is easy to check that the set of all projectors satisfying (ii) is closed
with respect to countable supremum. It follows from o-finiteness of algebra M
that there exists a maximal projector E satisfying (ii}. Let v, be an invariant
normal state associated with E. Then S(v,) > E; however, for P < S{(v,)
condition (ii) is valid. It follows from maximality of E that S(v,) = E.

(1), (ii) = (iii) First of all we note that for every projector P < [—E there exists
a non-zero projector ¢ < P such that inf,, >0 7(Ang) = 0. Otherwise construction
from implication (i) = (ii) gives an invariant state u with support S(u) > P,
which contradicts (i). Let 7(¢) = ¢ > 0. There exists a sequence of naturals
N1,N9...,Nk,...such that ny <mg < -+ < ng <--- and

k—1
T(\/ Mgy < e g~ (k+1),
j=1

The proof is by induction on k.
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k = 1: From inf,>07(Ang) = 0 it follows that there exists n; with
T(a™q) <e-272

Let us assume that nj,...,n,_; are already defined. Note that
infr(An(g+ @™ 17 -2g ... 4 ™ 1T g)) = 0.
Indeed, |7(Ang) — T(4n(a™q))| < n™12m, hence
ingT(An(q +ato1TMR=2g 4L @M 1TTg)) < ;Iéfo T(Anq) + 2kng_1-n" L.

Then find n; in such a way that

k-1
\/ a™TMg) < ZT( N g) < g2 27 (D),
j=1
Let
oo k-1
o=\ Ve g and g=qrdg,
k=1 j=0

where gi- = I — ¢;. Let us show that g # 0. Indeed,

oo k=1
) =(¢* va) =@t v (\  amMg) <1-e-27 <1

k=1;=0

From o™ ™q < ¢ for k > £ it follows that a™*~™gqlgj for £ > £. So

att Mgy, = a™ Mg A a"k‘"‘qf' < a™~™g and o™ Mgylql. Hence

o™ Mgy 1 go for £ > £ and @™t gs La™qq, k > £. Thus for P < I — E the non-

zero projector ¢ < p was constructed such that a™*as o™ a,y for some sequence

ny <ng <---and

o0
| o e, =1
i=1 °°

From the estimate

2n. - k
| AN g < £

1
AN @+ o b a )| < ko2 4k

for N > ny - 2* there follows convergence to zero when N — 00, s0 g3 is a weakly
wandering operator.

Let g21 = g2; the same construction applied to projector ps 1 = I — E, gives
projector gz 2, and so on. Let the system {g2,}5%; be a system with maximal
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sum. Then § = - FE, otherwise the same construction may be used one more time
to get projector § < I—E —¢, § # 0, what contradicts maximality of §. The set of
such projectors is at most countable; this follows from o-finiteness of M. Consider
operator h = 5> 27"qy,, h > 0, ||h]| < 1, by construction of S(h) = 1— E.
Fix ¢ > 0, £ = [log,e~!] + 2, and natural N; with ||A,gs ;|| < e-2777! when
n > N;, M = max;<;j<¢ N;. For N > M the following inequality holds:

<e

o0

bl

ANh]loo < ze: Ang2,jlloo + 2_8}\AN(§:2_i : Q2,Z+i)
j=1 i=1

or h is a weakly wandering operator.

(iii) = (i) o-finiteness of M implies that there exists a weakly wandering
operator h with the property S(h) > S(h;) for every weakly wandering operator
hy. Let 4 be an «,-invariant normal state with maximal possible support. Then
u{h) = 0 or S(u)LS(h). Let p = I - S{u) — S(h). Maximality of S{u) and
implication (i), (ii) = (iii) imply that there exists hy with S(h;) =1 — S(u) or
p=0. ]

It follows immediately from the theorem that

CoroLLARY 1.1 (Neveu decomposition): Let o be an automorphism of finite
von Neumann algebra M with finite tracial state 7. Then there exist projectors
F, and Es, E1 + Ey =1 such that

(i) There exists an a.-invariant normal state p with support S(p) = E;.

(i) There exists a weakly wandering operator h € M with S(h) = E,.

2. Stochastic ergodic theorem

The space M, of normal functionals on von Neumann algebra M with finite trace
7 is naturally identified with the space L;(M,7) of measurable operators, each
affiliated to M and integrable with modulus. Action o' is defined as an operator
conjugated to o with respect to duality:

(@ X y)=7(X-ay), Xe€L(Mr7), yeM.

Definition 2.1: A sequence {X,} of measurable operators is said to converge
stochastically to operator Xo, if for every € > 0

7({|Xn — Xo| > ¢}) — 0.
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THEOREM 2.1 (Stochastic ergodic theorem; see [10]): Let a be an automorphism
of von Neumann algebra M with tracial state . Then for X € Li(M,) Cesaro
averages A™X converge stochastically to X € Ly(M.r). The limit X is o-
invariant and E;XE, = 0 (where E, is a projector from Neveu
decomposition).

Proof: By Theorem 1.1 there exist projectors Eq and Ej such that E; + E; =1,
S(p) = Ey, S(h) = E3, where p is an invariant state and A is a weakly wandering
operator. Projector F1 is a invariant. Indeed, 1 = p(E;) = p(aEy), so aEy > E;.
Moreover, aE; — E; is a projector and let E; = a~!(aE; — E;). Then E; =
E, - a7 'E; < E;, but p(E3) = 0; this contradicts that p is faithful on F;. Let
v € M, be a positive normal functional on M, C be associated with u self-adjoint
positive operator, and C € Li(M,7). Let p(z) = v(E1zE1) = 7(Yz) for all
£ € M. Then Y = E|CE, and E1A,(c/,C)E, = A, (o), E1CE)) = An(,Y).
Let B = E;CEj. Let ag = a]MEl, Qg = a|MEz, M|g, = EiME;, i =1,2. Then
EsA,(d/,C)E; = An(afy, B). Let us show that A;*X; converge stochastically,
where i = 1,2, X; € L1(ME,,7), and A"X; =n"! Z?;ol ol X;.

LEMMA: Let E and F be projectors from M, A1 and Ay be positive numbers,
M < Ay, and A >0, A€ M. Then \oF < \\E + (I — E)A(I - FE) implies that
7(Fy<1-7(E).

Proof: Let 7(F)+ 7(E) > 1. Then "(FAE) = 7(E)+1(F)-1(EV F) 2
7(E) + 7(F) — 1 > 0. Multiplying the inequality in the condition on both sides
by FAE, one gets \oF AE < ) FAE,and Az < A;. Contradiction.

Fix ¢ > 0 and a sequence {§;} of positive numbers &; | 0.

We prove convergence in algebra M|g,. Let B > 0, B € Li(M|g,,7), G; =
{ho < X}, 0 < X\; < 1, such that 7(E; — G;) < 6;/2. Inequality G; = )\i"lho
implies that G; is a weakly wandering operator, and for n greater than some
number m; inequality ||A™(a}, Gi)|lee < €-6/10 is valid. One can assume here
that sequence {m;} increases. Let G;, = {GiA™(a}, B)G; > ¢/10}. Then
/10 - G; n < G;A™(ah, B)G; and since 7(G;A™(af, B)G;) = T(A™(a, Gi)B) <
¢-8; - 7(B)/10 then 7(G;n) < 6;/2. Let ¢in = G; — G; . For n > m; one has
T(gin) > 7(E2) — 6:/2 and g; nA™(03, B)gin € M|E,; ||ginA™ (0, B)gimlleo <
/10 and tends to 0 when n — oo.

In order to consider convergence in algebra M| g, we prove the following variant

of the individual ergodic theorem.
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THEOREM 2.2 (see [17], [5], [4]): Let M be a von Neumann algebra with finite
normal trace T, 7(I) = 1. Let a be an automorphism of M, p a normal faithful
state on M, poa = p. Then for every p € M, there exists an «,-invariant normal
functional i such that for every € > 0 there exists projector E € M, 7(E) > 1—¢
and

sup |[(A%p— p)(z)/7(z)]— 0 whenn — oo.

z€EM4E
T#0
Let (H,,7,, M) be a representation of algebra M constructed by a faithful

normal state p. Then 9M is a von Neumann algebra isomorphic to M. Let & be
an image of automorphism « and & be an associated transformation on 9%':

(1) (GX YQQ)= (X -dYQQ), XeM Yem,

where Q is a bycyclic vector with (X, Q) = p(X), X € 9.

The following theorem is a variant of the maximal Hopf Lemma. Note that
such a variant can be used for the proof of individual ergodic theorems in JBW*
algebras.

THEOREM 2.3 (see [4], [16]): Let u € M, be a hermitian functional and € > 0,
|ll]-e=1 < 1. Then for fixed N there exists projector E € 9, p(E) > 1—||p|le !
such that

sup |A™ (G, p)(x)/p(x) <e, n=1,2,...,N.

T€EME

z#£0
Proof: Denote by 9 von Neumann algebra Hfﬁl IM;, where 9M; = M. Let

N
L ={(Bni)n=1,.,N;i=1,2:0< B,; and Z(Bn,l + Bp2) < I}
n=1
and define a weakly continuous function on L,
N
G((Bns)) = Y n[A™(G, #)(Bn,1) = p(Bn,1) = (A™(én, 1')(Br,2) = p(Bn,2))];
n=1

where p' = ¢!y

Weak compactness of L implies that there exists (B, ;) € L such that

G((Bag) > G((Bas)) for every (Bny) € L.
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Let R=1-Y"_ (Bai+ Bnz), R >0, R <R, (Bn;) = Baj if (n,9) # (m, 5)
and By, ; = By j + R'; then (By ;) € L and G((Bn:)) < G((Bny))-

For j = 1 it implies A™(&., p')(R') < p(R'), for § = 2 it implies
A™ (b, p)(R') 2 —p(R') or [A™(bu, p)(R)| < p(R') -e. Let E = S(R) and
0 < z < AR. For R’ = A~1z it implies that |A™ (&, u)(z)|] < p(x) - . The set
{0 <z <1, z < AR for some A > 0} is weakly dense in {0 < y < E}, so the
estimate above is true for all 0 < z < E. It follows from comparing G{((6Bn;))
and G((By,)) that p(E) > 1—¢~Yull. ®

By the theorem of Kovacs and Sziics [9], the sequence A7 (d., ) converges in
the norm in space M, to functional fi. Let us show that there is a dense subset
L in the space of normal hermitian functionals 9, for which

(2) sup |(A™(dx, p) = B)(@)/p(z)] = 0 when n — co.

z#0
Let U = {p € Mut,||p|]| € 1,u < Ap for some A > 0}. For p € U there exists
y € M., y < Isuch that p(z) = (y2Q, Q) [3]. So
A™(G, () = p(A"z) = (y - A"2Q, Q) = (A™(&,y)zQ, Q).

From é&.-invariance of p it follows that i < Ap and there exists § € 9’ with
i(z) = (72Q,Q); x € M. Let y, = y — A™(&,y) + 7 and pn(z) = (Y20, Q);
then for x € M,

(¥ (@ 110) — ()] = (A4, (y = )2, )] < 2= 50

since
2n|}yll o

145y = vo)lloo < T

Moreover,
ltn = plly = sup |(F— A™(&,y)) - 22, Q)| = ||A™ (s, 1) — f2]]1 — O
zEM
||13”<>051
whenn — 00. S0 L= {pn —vn i< Ap, v< Ap, A >0, p,v € M, } is dense
in norm in the set of all normal hermitian functionals.

Proof of Theorem 2.2: There exists a self-adjoint positive operator B affiliated
with algebra M and 7-integrable with modulus such that p(z) = 7(Bz), = €
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M. We will identify normal functionals on M and normal functionals on 901.
Let us show that there exists function v(a) such that for every projector E €
M inequality p(E) < « implies 7(E) < y(a) and y(a) — 0 when a — 0.
Consider unit ball M, with metrics p1(z,y) = p({x - y)*(z — y)) and 71(z,y) =
7((x — ¥)*(z — y)). By the theorem [3], faithfulness of p and 7 on M implies
that topologies generated by metrics p; and 7 coincide with strong topology
and the metrics are equivalent. Existence of function y(«) is exactly equivalence
of distance from zero to projector E.
Fix € > 0. Let {¢;} be a sequence of normal functionals satisfying (2) and

(3) e =il <477y, G=1,2,..5 N;
be naturals such that

sup [(A™ (e, pj1) — Bjp1(2))|/p(x) <4777 2y;  for n > Nj,
zEM+

z#0

where fi; is a ||-||1-lim A™ (o, ), existence of the limit follows from the Kovacs—
Sziics theorem, v; = max(y~!(e - 477),1), and v~ 1(a) is the inverse function
of ~.
By applying Theorem 2.3 to the functional y—p; with e’ = 4774; and N = N,
there exists a projector E; with p(E;) > 1 — ~; such that
Sup A" (0, = 1)(2)]/ () < 477,
zEEJ- M+ Ej
zF#0
Moreover, going to the limit in norm of M in (3) implies ||z — f;]] < 477; so
there exists F; with p(F;) > 1 —; and
sup |(& = 73)(x)]/p(x) < 4777

::EFJ-M+FJ~

2#0
Let Ej = E; AF;. Then 7(E}) > 1 —7((I— E;)v(I- F;)) >1—2-¢-477, since
7(I-Ej) <e-47. Let E' = \; E}. Then 7(I-E') < 2o T(I-E}) < 2¢/3. Let
F' = {A1< B <A}, A>1, Asuch that 7(F') > 1 —¢/6. Then for E = E' A F/,
7(E)>1~e Fix§>0,6<1and N = [log;,;6-A7'| + 1. Let j be such that
N; € N < Nj41,n> Njgq. Then

sup [(A™(aw, p) — 2)(2)|/7(x)

s€EME

r#0
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< sup (Ao, i~ py) — (B — 1)) (@)|/7(2)
*€EMLE
x#0
+ sup [A™a, p5) — i)(2)l/7(z)
2€EM4E
#£0
< sup [(A™(aw, p = p5) — (B = B3))(@)|/p(x) - sup p(z)/7(x)
(4) 2EEM,E *€EME
x#0 r#0
+ sup |(A™(a., py) — 25)(@))/p(x) sup p(z)/7(z)
2€EMLE c€EM,E
zF#0 x#0
<477 sup p(z)/7(z).
*€EM,E
z#£0
Taking into consideration that 0 < x < F we have p(z)/7(x) = 7(B-F'z)/7(z) <
T(AF'z)/7(x) < A. So (3) does not exceed 479\ < § by the choice of j. Theorem

2.2 is proved.
Continuation of proof of Theorem 2.1: By Theorem 2.2 there exist projectors

P; and naturals N; such that 7(E; — P;) < §; and

sup J(A™(ax, p) — B)(2)|/7(x) < /10, whenn>N;, jF=12,....
:GPJ‘M+PJ'

z#0

Let Y,Y € Li(M|g,,7) be self-adjoint operators such that 7(Yz) = u(z) and
7(Yz) = ji(z),z € M|g, (remember that fi is a || ||; — lim A™(a., p). Then

sup  |(An(@re, . — p)(x)]/7(x)

et
=50 l(u=A)An(en,2)l/ (@)
z#0
= sw (Y = V)(An(o,2)l/7(2)
z#£0
= _swp [r((4a(03,Y) = V)a)l/7(2)
z#0
= s (AN, Y) - V)2, 260 /(27 60, 2°6o)

z2*#0,x=2*z
sup |(An(a},Y) = Y)n,n)) = [|Pj(An(a},Y) = V) Pjllsc-

n€P; H
[inli<1
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Let A, (a',Y)—Y =B, 4y~ Bn_, S(Bu+) S(Bn-)=0.
Let F,,; = E1 — S(Bn4) — S(Bn,~) + S(Bn,+) A P; + S(B,,—) A P;. Since
7(S(B,1) A P;) < 7(S(Bn,+)) — 6; then 7(F, ;) > 1 — 28;. Moreover,

1Fn j(An(0h, Y) = V)E, 5112
= [|Fn,j(An(a],Y) = Y)[S(Bn,+) A P + S(Bn,-) A P;
+ (I= S(Bn,+) = 5(Bn.-))(An(a1,Y) = §) Fllo
> max{||Fy, j(An(a},Y) = Y)S(Bn+) A PilI%;
|Fnj(An(e/,Y) = Y)S(Bn ) A Bjl1%;
1Fn.i(An(a}, Y) = Y)(I = 8(Bny) = S(Ba,-)l1%}
= max{||Fn ;Bn,+ Fr,il|20: |1 Fn,iBn,~ Fn jli% )

where inequality is valid because ||C + D + El| > max{]|C||oc, || Dlloo, || Elloc }

for C, D, E > 0 and the next equality is valid because

[|Fnj(An(e,Y) = ¥)S(By ) A Pjll2, = ||Faj(Bn 4 = Bn,—)S(Bnx) A Bl13
= ||Fn,jBn,+5(Bn,+) A Pj||2,
= ||FnjBnt Fujl|%-

Let B n = gin AQin + Frn s A Qin, where projectors Q; , will be chosen later.
Then
sup |(Ein(A™(a',C) = Y)Ein€, )|

£cH
flgli<a

< sup [(ginE2(A™(d/,C) = Y)Esqi n€,€)]

EEH

ligli<1
+ sup [(Fo:E1(A™(,C) = Y)E1Fy . )

5 £EH
ligl<t

+ sup [((gin A QinA™@,C)Fy; + Fr i A, C)gin A Qin)E, ).

£EEH

i<t

The first term of inequality (5) does not exceed

sup |(ginA" (08, B)gin€, §)| < €/10
EE€EH
fleli<t
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and tends to 0 when n — oco. The second term of (5) does not exceed

sup |(Fni(A™(a},Y) = Y)F,:€,6)| < /10

¢eH
flgfl<1

and tends to 0 when n — oo. Let Q;n = {A™(a/,C) < Ain}, where );,, > 0.
Since 7(Q7,) < )\:Tll - 7(C), the choice A;, > 7(C)/6; implies 7(Qin) > 1 — 6;.
Then

Gimn A QinA™ (o, OV i A QinA™(d!,C)gin A Qi

S Gin A Qi,nAn(a’a C)Qi,nAn(alv C)gi,n A Qi,n

S )\i,ngi,n A Qi,nAn(ala C)gi,n A Qi,n

< XinGinE2A™Md!,CVEagi n = AinginA™ (g, B)gi n,
SO

”gi,n A Qi,nAn(alv C)Fi,n A Qi,n“oo S (/\i,nan,i)l/2~

Thus the left part of (5) does not exceed an ;+bn i +2(X; nan )2 Fixi. The esti-
mate on A;, depends only on ¢ while b,;, and a,; tend to zero
when n — o0, so there exist naturals K; such that, for n > K;, the estimate
Qn i+ bn + s(/\i,"a”,i)l/2 < ¢ is valid. It is possible to assume that K; increase.
For n € [K;, Kiy1),

”Ei,n(An(al7 C) - ?)Ei,nlloo <e¢
and
T(E’i,ﬂ) = T(qi,n A Qi,n + Fn,i A Qi,n) >1-— 4éz

hold.
Let P! = {|An(¢/,C) — Y| > 5¢}. Then

5¢- Pl < |An(d/,C) = Y|
<2-Eipn-|An(d,C) = Y|Ein +2(1 - E; ,)|An(o/,C) - Y|(I - E; )
< 4eE; 4+ 2(1 - E; )| An(e/,C) = Y|(I - E; ).

By the lemma 7(P}) <1 - 7(E; ) < 46;. |
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3. Case of d commuting automorphisms

Let us consider the case of d-commuting automorphisms. Let d > 1 be a nat-
ural number and V = {0,1,2,...}¢ be an additive semigroup of d-dimensional
vectors with natural coordinates. For v = (w;),v = (v;) € V, relation u > v
(u > v) means u; > v; (u; > v;) for i = 1,...,d. By [u,v] we denote the set
{w € V:u <w < v} For a finite set B let card (B) or |B| mean the number
of elements of B. For n = (n1,...,nq4) € V let n(n) = H‘jzlnu = |[0,n[|. For
n € V and operators By, 0s,...,084 let B, = 67852 ...85%; Sp = Zue[o,n[ﬁm
An, = w(n)~'S,; expression n — co means that n, tends to infinity indepen-
dently for v = 1,2,...,d. Let ay,as,...,a4 be automorphisms of algebra M.
Operator h € M} is called weakly wandering if ||A,h||cc — 0 when n — oo.
A multisequence {X,},ev of measurable operators affiliated with M is said to
converge stochastically to operator Xy, if for every ¢ > 0 7({|X,, — Xo| > €}) = 0
holds when multiindex n — oo.

THEOREM 3.1 (see [10]): Let a1,qs,...,aq4 be commuting automorphisms on
von Neumann algebra M with faithful normal finite trace 7. The following
conditions are equivalent:

(i) There exists an . ;-invariant normal state p on M with support E such
that the support of every a, ;-invariant normal state does not exceed E
(i=1,2...,d).

(ii) There exists a weakly wandering operator hy € M, with support I — E
such that the support of every weakly wandering operator does not exceed
I-E.

Moreover E = /\fl=1 E;1-FE = \/f:I(I[ — E;), where E; is the “maximal”

support of the invariant normal state of the automorphism a;, i = 1,2, ..., d.

Proof: Let E; € M be the “maximal” support of an «;-invariant state p. Then
algebra M|g, is o) invariant, i = 1,2,...,d. Let us show first that the support
of the normal component of every o(M*, M) limit point of the set {A"u}
where u € MF; p(I) =1, S(u) = I is equal to Ey. Indeed, let ¢ < E; be a non
zero projector from M, p(e) = a > 0. Let A > 0 and let v < Ay be a normal
functional with ||p — v|| < a/2. Let o be a o(M*, M) limit point of {A*"u},
and {n,} be a set such that A*™pu — pg, A*™v — vy, where 1y € M*, and

let vy = von + vos be a Takesaki decomposition of functional vy on normal and
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singular components. Then

llp = volly < limsup||A™ (p = v)|| < |Ip = vll1 < a/2.

There exists [15] a projector such that ¢’ <e, e € M, p(e’) > 3/4a, vos(e') = 0.
Then vo.(e') = vo(e') > ple’) = |lp—wo|| > a/4 or pon(e’) > A" won(e') > A71a/4
since relation po > A~ lyg implies pon > A1y, [15]. Arbitrariness of projector P
implies that po, is faithful on Ey M E; or S(g,) > E1. It follows from maximality
of F; that S(pon) = Fi.

For E € M, we have

(6) (@3n0)(E) = (agA*"W)(E) = ljlrvn(A*””aEu)(E)'

Functional ajp is faithful and normal because p is faithful and normal. So
the normal component of ajpuo has support E;. Then ag(I — E;) = I - E;
because (a%uon)(I— E1) = 0, so 0 = Eyjaq(l — Eq)Eq; ||Eraz(l — E1)E1ljee =
llao(I— E1)E1E1||o = 0 and as(I1— Eq1) = (I— E1)as(I- E7)(I- E;) =1-E;.
Thus M|g, is ; invariant for i = 1,2,...,d. Relation (6) implies also that
functional a,gpigy is @, invariant. Let us show that there exists an a,;-invariant
normal state with support not less than /\:.i=1 E; Lete< /\f=1 E;, e # 0. Then

inf 7(E1(E1a2E1)"(e)Ey ) = inf 7(afe) > 0,

and an analogous relation holds for every e’ < e, ¢/ # 0. By Theorem 1(ii) there
exists an (EqagFE1 ).-invariant normal state on algebra E1 M E, with support E,
such that £y > e and E; is “maximal” in the sense of point (i) of the theorem.
By what was proved above automorphisms Eyo;E; (i = 1,2,...,d) leave Eq
invariant, so all considerations can be extended on algebra EsM Es. Relation (6)
also holds if we change E; to E; and a5 to a3. Repeating the procedure one gets
an Ey_1a4FE4_;-invariant normal state with support E4 > e; projector Eg is o
invariant (i = 1,2,...,d). Arbitrariness of e < /\ E; implies the proposition.

Let h; be a weakly a;-wandering operator with “maximal” support
(1=1,2,...,d). Then for n = (ny,ny,...,n4q)

[ Anhilloo = 1422 AZ2 ... A% A% hilloo < [|A% Rilloo — 0 when 1 — co.

Let h = d-13°%  h;. Then h is weakly wandering and S(h) = Vi, S(h;) =

¢ (I - E;), since by Theorem 1(iii) one has S(h;) =1 — E;. |
=1
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THEOREM 3.2 (Stochastic multiparametric ergodic theorem): Let a; be auto-
morphisms of von Neumann algebra M with finite normal state 7,1 =1,2,...,d.
Then for X € L,(M, 1) averages A., X converge stochastically to X € Li(M, 1),
where n = (ny,ng,...,ng). Limit X is a,; invariant and EXE = 0, where

E = \/le(]I — E;), and E; projectors were constructed by Theorem 3.1.
The proof of the theorem is based on the following theorem.

THEOREM 3.3 (see [17], [12], [5]): Let M be a von Neumann algebra with normal
tracial state T and o; be automorphisms of algebra M, 1 = 1,...,d; p is a faithful
normal a;-invariant (i = 1,...,d) state on M. Then for every u € M, there exists
an oy-invariant functional [ such that for every ¢ > 0 there exists projector
E e M, 7(E) > 1 —¢; moreover ||Aunpt — Bll1 — 0 and

sup |(Aunpt — @){(z)/7(z)| = 0 when multiindex n — oo.

c€EME

z#0
Let P; be a map v — limg_,o A’,fiu. Map P; is a projection on the set of au;
stationary points and

B=Py-Py_y-- Pip.

Proof: For d = 1 the statement of the theorem coincides with Theorem 1.2. The
induction steps are based on the following estimates. Fix ¢ > 0. There exists
multiindex (Ny_1,. .., N1)¥) such that for n > (Ng_y,..., N)@)
HA*"d (A*(nd_l,...,nl)Pd—lpd—Q .. Plﬂ)“l <Y,
where 7; are defined in Theorem 2.3. There exists projector E () such that
rHEW)y>1-¢.279

and

sup  |Aun,(Autnay,nyit — Pacr - .. Prp)(a)|/7(z) < 279,
zeE(j)M+E(j)
z#0
By Theorem 2.3 there exist N, and projector E(®) such that 7(E(®) > 1 —¢/2,
and for n > Ny

sup  |Aun,(Pg1-- Pip) — PyPy_q -+ Pip)(z)l/7(2) < /2.
=cE(0) pm E(D)

T#0
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Let E = \j2 E7. Then 7(E) > 1- 372 7(EY)) > 1 —¢ and

sup  |(Ax(ng..nytt — Pa- - Prp)(z)/7(z)]
2€EMLE

< sup |(A*nd(A*(nd_1..‘n1)ll ~ Py Pyp)(2)|/7(x)
zEEM+E
z#£0
+ sup |(Any(Pa—1--- Pip) — Pa--- Prp)(z)|/7(x)
IEEM+E

z#0
< b,

when j > |logy §~1/2|+ 1 and n > (Ng4, (Ng_1,..., N1)@). |

The proof of Theorem 3.2 is similar to the proof of Theorem 2.1.

4. Superadditive stochastic ergodic theorem

Let F be a set of all non empty intervals [u,v[; u,v € V. For ] € Fandw e V
let I +w=[u+wv+w

Definition 4.3: (see [10], [1]) The superadditive process with respect to auto-
morphisms oy, as, ..., a4 is called function F: F 3 I — Fr € M,;, where M,
is the set of all hermitian normal functionals on von Neumann algebra M with
the following properties:

(i) FFoa™ =Fry,forT€e F,neV;a™=aj'...a}%

(i1) for non-intersecting sets Iy, Io, Is = Iy U I3; I3 € F, we have
Fp, > Fp, + Fp,;

(iii) constant y(F) = sup(( card(I))~}F;(I)) < co.

The following theorem is valid:

THEOREM 4.1 (see [10], [1]): Let M be a von Neumann algebra with faithful
normal tracial state . Let also oy, ...,ay be automorphisms of algebra M and
F; be a superadditive process with respect to ay,as,...,a4. Then F[O,n[ =
(card([0, n[)) " Fjo [ converge stochasticaly to a, invariant functional Fy, when

multiindex n — oo.

The proof of Theorem 4.1 is based on the following statements.
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THEOREM 4.2 (see [17], [5]): Let M be a von Neumann algebra with faithful
normal tracial state T and let a,...,aq, Fi, Fy be the same as above. Assume
that there exists a faithful normal state which is a,.-invariant (i = 1,...,d).

Then Fig n[ converges to Fy in the norm of the space M,.

The finite subset {I,}5_, C F is called admissible if there exists a rearrange-
ment P of {1, Caey k} such that each (( .. (IP(I) U Ip(g)) U Ip(g)) U---u Ip(g)) is
in F. Note that for an admissible subset {I,}5_, property (ii) implies

k
Fu 2> Fi
L;J =1
Finite subset { Iy (j—1),m;(}> J € [0, n[, where m € V and mj = (m171,...,maja);
m = (my,...,ma), j = (J1,---,Ja), is admissible. For interval Ify ,,; we can find a
finite subset {I,}5_, such that Ilo,n[UUf:2 Iy = Ijo mp and the set {Ijo o, {Te}5_,}
is admissible. Let n! be a multiindex (n!,...,n!) and F; be a limit in the norm

M, of AL, (Fr) when n — oo. Let us show that Fg | increases. Indeed, from (ii)
it follows that

n—1)! n—1)Hi
(7) Flony > E AL “Flo,(n—1)1[-
0<i;<n
ij=1,...,d

Applying Aj to both sides of (7) and tending to the limit in norm M, when
k — o0, one gets

F[O,n![ > Z F[O,(n—l)![-
05ij<n
j=ly...d
Let us show now that if F' is a non-negative superadditive process {(or F; > 0
for all I € F), then limp o Fion((I) = 7(F). Indeed, fix e > 0,k such that
Fio x((I) > v(F) — €/2. Let n be such that

(card ([0, n[)) " card([0, [m/k]k[) > ',
where 7' = 1— ¢/2(max{1,7})"%; [n/k] = ([n/k1], [n/k2], ..., [n/k4]). Then

Fio,n((T) > card([0, n[)) ™" Flo,fn/kj((T)
> card([0,n[))~ card([O [n/k]K[) - [ o,[n/kjk(1)
>(1—¢e/2)(v—¢/2) > —¢;
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here every inequality is valid because all the indexes are admissible.

We now show that Theorem 4.1 is enough for the proof for a non-negative
superadditive process. Indeed,

card([O, k[))_l Z Ozil1 e .aZdF(O _____ 0) — F(O,.,.,O)
1€{0,k{

,,,,,

and Fy > ) .y ot ...t F, (0,...0) = 0. Note also that stochastical convergence

,,,,,

of F 7 is equivalent to stochastical convergence of F;. Assume that Fy is a non-
negative superadditive process and ¢ > 0. Fix n € V such that F[O,n![(ll) >
v(F) —¢. Let Fy =T — limg—.oo Flo5- Then

Fo(My=v(F) and ||Figu— Fol| = Fo(1) — Fiom(D) < e.
Let ko € V such that for k > kg and k € V,
(card([0, k[)) " tcard([¢, ([k/n!] ~ 1) - n! +i[) >1—¢ for all i € [0,n[
holds and F‘[Oyk[(l[) > v —e. Let ky be such that for k > k,,
1A e/t (Flomy) = Fomilh < €

holds. Then for k > max{kg, k;} the following inequality is valid:

O i
|| Fjo,e; — Follx
<(card([0,n!]))"* - Z || Fo,x( — (card([0, [k.n!] — 1)) "
i€[0,n!]
o oM a4 (@ Fo il + | Age/mipntFlom — Flomll
JE[0[k/nl]—-1{

+ HF[O,n![_ F0||1-

Let us estimate each term on the right side of (8). By the choice of n the last
term does not exceed ¢, and by the choice of k the third term does not exceed ¢.
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For the first term we have:
(F.T.) <(card([0, k[)) || Flo,x — Z a1 ol (o Fg )
J€l0,[k/nt-1(
+ (1 = (card([0, k[)) ™" - (card([0, n![))
- (card((0, [k/n!] = 1]))) - || Fio.ny|
<(card([0, k[)) ™ [Flo,x((I) — card([0, [k/n!] — 1[) - Fo,ny(I)]
+ (1 — card([0, k[)) ™" - card([0, n![)card([0, [k/n!] — 1]) - FloA(I)
<(card([0, k[))~*
- [card([0, k]) - (v — €) — card([0, [k/n!] — 1[)card([0, n!]) - ¥]
+ (card([0, k[)) " [card([0, k[) — card([0, [k/n!] = 1])) - card([0, n![)]) - v
<dev,

where the second inequality follows from the possibility of admissible extending
of {Fljni+i,(j41)n14i[} Where j € [0, [k/n!] — 1] up to set [0, k[ and from the non-
negativity of the superadditive process; the last inequality follows from the choice
of k. Thus (8) does not exceed 2¢ + 4evy. |

Proof of Theorem 4.1: Similar to the proof of Theorem 3.1.
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