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ABSTRACT 

Ergodic  type  theorems for au tomorph i sms  of finite yon Neumann  alge- 

bras are considered. Neveu decomposi t ion  was employed in order to prove 

s tochast icM convergence.  

I n t r o d u c t i o n  a n d  n o t a t i o n s  

This paper is devoted to the presentation of some results concerning ergodic 

type theorems in finite von Neumann algebras. The first results in this field 

were obtained by Sinai and Anshelevich [14] and Lance [11]. Development of the 

subject is reflected in the monographs of Jaj te  [5] and Krengel [10]. 

The notion of a weakly wandering set (in a commutative context) was intro- 

duced by Hajian and Kakutani [7] in order to establish conditions which are 

equivalent to the existence of finite invariant measures. The non-commutative 

case was considered by Jajte [6]. 

In section 1 we consider Neveu decomposition which gives a characterization of 

the existence of the invariant measure in terms of a weakly wandering operator. 
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Section 2 is devoted to a representation of the Krengel stochastic ergodic the- 

orem for the action of an automorphism on finite von Neumann algebra [3]. 

In section 3 we consider a mult iparametric version of the stochastic ergodic the- 

orem. In section 4, the mult iparametric superadditive stochastic ergodic theorem 

is considered. 

We use the following notations: M is a von Neumann algebra with finite tracial 

s tate T, M.  is a predual of M, and M* is the Banach dual space to M; l[ denotes 

the unit of M. For p E M.,  the support  of p will be denoted by S(p). Let a 

be an automorphism of algebra M, and let a .  be an operator acting in M. ,  to 

which a is conjugated. By A" (A*' )  we denote the Cesaro average of a (a*). 

1. N e v e u  d e c o m p o s i t i o n  a n d  t h e  w e a k l y  w a n d e r i n g  o p e r a t o r  

Definition 1.1: A positive operator h _< [ is said to be a w e a k l y  w a n d e r i n g  

o p e r a t o r ,  if 

I[A'~h[I ~ 0 when n ~ oo. 

The following theorem is valid. 

THEOREM 1.1 (see [7], [6], [10]): Let M and~ beas defined above. Thefollowing 

conditions are equivalent: 

(i) There exists an ~,-invariant normal state p on M with support S(p) = E 

such that the support of every a,-invariant normal state # is less than or 

equal t o E :  S(#) <_ E. 

(ii) E is the maximal projection such that for every projector P < E, P E M,  

inf Z(a~P)  > 0. 

(iii) There exists a weakly wandering operator ho E M+ with support S(ho) = 

- E  such that the support of every weakly wandering operator is less than 

or equal to ~ - E.  

Proo~ (i) ::~ (ii). Let e < E and p(e) = e > 0. Since the set 

{v: v _< &r, v E M +,  ,k = 1 ,2 . . . }  is dense in norm in M +,1, then there ex- 

ist ~ > 1 and v E M + such that  u < AT, l i p -  /2[[1 < £/2. So *1 
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Let (i) hold and E1 be a projection such that  not E _> E1 and for every P <_ E1 

the following relation is valid: 

inf z ( a ' P )  > 0. 
n_>0 

Let us consider the sequence {A*nT}nC~=l C M*. By the Banach-Alaogly theorem 

M~" is compact with respect to a(M*,  M) topology; we denote the limit point of 

{A*nT}~_I by v0, ~'o C M~'. From A*n~ - _> 0 it follows that  Vo _> 0. Moreover, 

[ [A.n7  _ A.n(c~.T)[  [ __~ 2 .  ][T[[, 
n 

so the limit state vo is c~* invariant. Let vo -- vo~ + v0~ be a Takesaki decom- 

position [15] of state Vo on normal and singular components. We show that  

the normal component is non-zero. Otherwise, for every projector q there exists 

projector p < q, p ~Z 0 with Vos(P) = 0 [15] or infn_>0(A*~v)(P) = 0, but this 

contradicts the assumption inf~>o ~-(a~P) > 0. Besides, the normal component 

is a ,  invariant. From a ' M ,  C M, it follows that  

~*~o = ~*~o~ + (~*-os)n + (~*~0~)~, 

where (a*vo~)~(s) is the normal (singular) component of functional a*Vo,. Since 

a is an automorphism, so (a*Vos)s = a*V'os and a'yon = o~,~o~ = yon. By the 

choice of projector E1 we have S(,on) _> E1 since POrt(P) >_ inf~>o(A*~7)(p ') >_ 

infn_>O 7(anp ') > 0, where p' < P <_ El,  ~os(P') = 0, p'  ~Z 0, or ~'on is faithful on 

El.  This contradicts (i). 

(ii) ~ (i) It  is easy to check that  the set of all projectors satisfying (ii) is closed 

with respect to countable supremum. It  follows from a-finiteness of algebra M 

that  there exists a maximal projector E satisfying (ii). Let v~ be an invariant 

normal state associated with E. Then S(vn) > E; however, for P _< S(v~) 

condition (ii) is valid. It  follows from maximali ty of E that  S( ,~)  = E. 

(i), (ii) ~ (iii) First of all we note that  for every projector P _< ] [ - E  there exists 

a non-zero projector q < P such that  infn>o 7(A~q) = 0. Otherwise construction 

from implication (i) ~ (ii) gives an invariant state p with support  S(#) >_ P, 

which contradicts (i). Let ~-(q) = e > 0. There exists a sequence of naturals 

n l , n 2 . . . , n k , . . ,  such that  nl < n2 < . . .  < nk < ".. and 

k-1  

T ( V  C ~ - ~ J q )  < ~. 2-(/¢+1). 
j : l  

The proof is by induction on k. 
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k = 1: F rom inf,,>oT(Anq) = 0 it follows t ha t  there  exists  

v ( a  n 'q)  < ~- 2 -2 .  

Let  us assume tha t  n l , . . . ,  nk-1  are a l ready  defined. Note  t ha t  

n l  wi th  

inf T(An(q + ank-'-"~-2q + " "  + ognk-l-n'q)) : O. 

Indeed,  H-(A.q) - T(An(amq))l <_ n - ' 2m ,  hence 

inf T(An(q + an~_,-n~_2q + . . .  + ank_,-~,q)) < in f  T(Anq) -Jr- 2 k n k - l  " n -1 .  
n>_O 

Then  find nk in such a way t ha t  

k--1  k - 1  

T ( V  cJ~k-nJq) <_ ET(o~nk--'bq)< e" 2 -(k+l). 
j----1 j----1 

Let 
oo k--1  

ql: V V oLn~- -n jq  and q2=qAq~,  
k = l  j = 0  

where q~ = ~ - ql. Let  us show tha t  q2 ~ 0. Indeed,  

oo k--1  

T(qt) = ~(q" v q,)= ~(qi v ( V V ~"'-"Jq))  < 1 - ~ 2 - '  < 1. 
k = l  j = 0  

From a " k - n t q  < ql for k > [ it  follows t ha t  an~-ntq lq~  for k > [. So 

o~nk-ntq2 = a'~k-"~q A ank-ntqlJ- < olnk--ntq and  o~nk-ntq21ql J-. Hence 

o~nk--n~q21q2 for k > [ and  O~nkq2lantq2, k > /~. Thus  for P < ~ - E the  non- 

zero p ro jec to r  q2 _< P was cons t ruc ted  such t ha t  a '~ a2..Lan*a2 for some sequence 

n l  _< n2 _< " "  and 
oo 

E oznkq2 oo = 1. 
j=l 

< 2nk. k k IIANq211 _ - Y -  + IIAN(q2 + n, q2 + . . .  + ~n,q~)l I < k" 2 k-`  + k - '  

for N > nk" 2 k there  follows convergence to  zero when N ~ 00, so q2 is a weakly  

wander ing  opera to r .  

Let  q2,1 = q2; the  same cons t ruc t ion  appl ied  to  p ro j ec to r  p2,1 = ~ - Eq2 gives 

p ro jec to r  q2,2, and  so on. Let  the  sys tem {q2,n}n°°= 1 be a sys tem wi th  m a x i m a l  

F rom the  es t ima te  



Vol. 90, 1995 ERGODIC TYPE THEOREMS 407 

sum. Then  ~ = ] I - E ,  otherwise the same const ruct ion m a y  be used one more  t ime  

to get pro jec tor  ~ < ]I - E -  q, ~ # 0, wha t  contradicts  max ima l i t y  of  q. The  set of 

such projectors  is at  most  countable;  this follows f rom a-finiteness of M.  Consider 

opera to r  h = ~n~__l 2 - ' q2 ,n ,  h > 0, []h[I < 1, by cons t ruc t ion  of S(h) = ][ - E. 

Fix c > 0, f = [log2 ~ -1] + 2, and na tura l  Nj with [IAnq2,jl[ < ¢ .  2 - j - 1  when 

n _> Nj ,  M = maxi<_j<e Nj. For N > M the following inequali ty holds: 

0<3 

e 2 -e AN " q2 ,g+i )  c~ ¢'  ilANhlI~ <- E tlANq2,JlI~ + ( E 2-i  <-- 
j = l  i---1 

or h is a weakly wandering opera tor .  

(iii) ~ (i) a-f ini teness of M implies tha t  there exists a weakly wander ing 

opera to r  h wi th  the p roper ty  S(h) >_ S(h l )  for every weakly wander ing opera to r  

hi .  Let # be an a , - i nva r i an t  normal  s ta te  wi th  max ima l  possible suppor t .  Then  

tt(h) = 0 or S ( # ) ± S ( h ) .  Let p = ]I - S (#)  - S(h).  Maximal i ty  of S(#)  and 

impl icat ion (i), (ii) ==~ (iii) imply  tha t  there exists hi wi th  S(h l )  = ~ - S(#)  or 

p = O .  | 

It  follows immedia te ly  f rom the theorem tha t  

COROLLARY 1.1 (Neveu decomposi t ion):  Let a be an automorphism of finite 

von Neumann a/gebra  M with finite tracial state •. Then there exist projectors 

E1 and E2, E1 + E2 = ][ such that 

(i) There exists an a,-invariant normal s ta te  p with support S(p) = El. 

(ii) There  exists a weakly wandering operator h • M with S(h)  = E2. 

2. Stochastic ergodic theorem 

The  space M ,  of normal  functionals  on yon N e u m a n n  algebra  M with  finite t race  

7 is na tura l ly  identified with the space LI(M,  7-) of measurab le  opera tors ,  each 

affiliated to M and integrable with modulus.  Act ion a ~ is defined as an ope ra to r  

conjugated to a wi th  respect  to duality:  

T ( a ' X . y ) = ~ - ( X . a y ) ,  X e L I ( M , T ) ,  y • M .  

Definition 2.1: A sequence {X,~} of measurab le  opera tors  is said to converge 

s tochast ica l ly  to opera to r  X0, if for every ~ > 0 

 -({IXn -- XOI > O. 
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THEOREM 2.1 (Stochastic ergodic theorem; see [10]): Let a be an automorphism 

of von Neumann algebra  M with tracial s ta te  T. Then for X C L I ( M ,  ~') Cesaro 

averages A'nX  converge stochastically to X C LI(M.T).  The limit f (  is a ~- 

invariant and E2f(E2 = 0 (where E2 is a projector f rom Neveu 

decomposition). 

Proof By T h e o r e m  1.1 there  exist projectors  E1 and E2 such tha t  E1 + E2 -- ]I, 

S(p) = El,  S(h) = E2, where p is an invariant  s ta te  and h is a weakly wandering 

opera tor .  P ro jec to r  E1 is a invariant.  Indeed,  1 = p(E1) = p(aE1), so hE1 >>_ El. 

Moreover,  hE1 - E1 is a pro jec tor  and let E2 = a - l ( a E1  - El) .  Then  E2 = 

E1 - a - l E 1  _< E l ,  bu t  p(E2) = 0; this contradic ts  t ha t  p is faithful on E l .  Let  

v C M .  be a posit ive normal  functional  on M,  C be associated with  # self-adjoint 

posi t ive opera tor ,  and C e LI (M,v ) .  Let #(x)  = v(ElxE1)  = 7-(Yx) for all 

x • M.  Then  Y = EICE1 and E1An(a' ,C)E1 = A~(a' ,E1CE1) = A ~ ( a ' , Y ) .  

Let  B = E2CE2. Let c~1 = ~]M~I, ct2 ---- C~IME2, MIE, = EiMEi ,  i = 1, 2. Then  
: A ] n  z • E2An(c~', C)E2 An(c~'2, B). Let us show tha t  ~ ~ converge stochastically,  

A,~X = n_ 1 x"-~n-1 tj ..: where i = 1,2, Xi • LI(ME~,T),  and ~ ~ ?-~j=o ai A~. 

LEMMA: Let E and F be projectors from M, A1 and A2 be positive numbers, 

A1 < A2, and A >_ O, A • M.  Then A2F _< AlE  + (ll - E)A(] - E) implies tha t  

T(F) <_ 1 -- T(E). 

Proof: Let T(F) + T(E) > 1. Then  7(F A E) = v(E)  + T(F) - 7(E V F) >_ 

~'(E) -F T(F) -- 1 > 0. Mult iplying the inequali ty in the condit ion on b o t h  sides 

by F A E,  one gets A2F A E _< A1 • F A E,  and A2 ~ A1. Contradict ion.  

Fix  e > 0 and a sequence {5~} of posit ive numbers  5i ~ 0. 

We prove convergence in a lgebra  MIE2. Let B >_ 0, B • LI(M!E2,T), Gi = 

{ho _< A~}, 0 < A~ < 1, such t ha t  T(E2 -- G~) < 5~/2. Inequal i ty  G~ -- A~-~ho 

implies t ha t  G~ is a weakly wandering opera tor ,  and for n greater  t han  some 

number  mi  inequali ty [ IA"(a[ ,  Gi)[I¢~ < ~.  5/10 is valid. One can assume here 

t ha t  sequence {m~} increases. Let  Gi,n = {GiA"(a'2, B)Gi >_ ~/10}. Then  

~ /10 .  Gi,~ <_ GiA~(a~2, B)Gi and since T(GIAn(oZ2, B)Gi) = T(An(a2,  G~)B) <_ 

e" 6i • ~-(B)/10 then  T(Gi,n) <_ ~i/2. Let qi,n = Gi - Gi,n. For n _> mi  one has 

q~,nA (c~2, B)qi , .  • MIE~; lU~,.~ ~ 2, B)q~,-II~ <-- T(qi,n) >_ T ( E 2 ) -  5i/2 and n , - A - :  a ,  

~/10 and tends to 0 when n ~ c~. 

In  order  to consider convergence in a lgebra  M I E~ we prove the following variant  

of the individual  ergodic theorem.  
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THEOREM 2.2 (see [17], [5], [4]): Let  M be a yon N e u m a n n  algebra wi th  f inite 

normal  trace T, ~-(lI) = 1. Let a be an au tomorph i sm o f  M ,  p a normal  fai thful  

state on M ,  p o a  = p. Then  for every#  e M. there exists an a . - invar ian t  normal  

funct ional  fit such that  for every  e > 0 there exis ts  pro jec tor  E • M ,  T(E) > 1 - e 

and 

sup I(d'~tt - #) (x) /~ ' (x )[  ~ 0 when n ~ oo. 
xEEM+E 

x#O 

Let (Hp, 7rp, ~ )  be a representation of algebra M constructed by a faithful 

normal state p. Then 92 is a v o n  Neumann algebra isomorphic to M. Let & be 

an image of automorphism c~ and &' be an associated transformation on ff~': 

(1) ( a x .  Ya, a) = ( x .  a 'Ya ,  a),  x • Y • 

where ft is a bycyclic vector with (Xf~,  f l)  = p ( X ) ,  X 6 9~. 

The following theorem is a variant of the maximal Hopf Lemma. Note that 

such a variant can be used for the proof of individual ergodic theorems in J B W *  

algebras. 

THEOREM 2.3 (see [4], [16]): Let  # • 92 .  be a hermi t ian  funct ional  and e > 0, 

I]#1t" e -  1 < 1. Then for f ixed N there ex is ts  pro jec tor  E E 9~, p ( E )  > 1 - !1#11 e -  1 

such that  

sup [ d ~ ( & . , p ) ( x ) / p ( x ) l < e ,  n = l , 2 , . . . , N .  
zE E~_~_E 

x#O 

2N Proof" Denote by 9)I yon Neumann algebra ]]j=l 92j, where ff)lj = 991. Let 

L -- {(Bn#)n=l ..... N; i=1,2:0 < Bn,i and 
N 

E ( B n , 1  + Bn,2) < 1[} 
n=l 

and define a weakly continuous function on L, 

N 

G ( ( B , # ) )  = E n[An(&*' # ')(B,,1) - p(B , ,1 )  - (An(&. ,  p')(Bn,2) - p(B~,2))], 
n= l  

where p' = e- l i t .  

Weak compactness of L implies that there exists (/)n,~) • L such that  

G(([~n,i)) >_ G((Bn , i ) )  for every (Bn,i)  6 L. 
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N B R / R '  = L e t R = [ - ~ n = l (  n J  + Bn,2), > 0 ,  G R, (/~n,i) Bn,i if (n, i) ~ ( m , j )  

and /~m, j  = /Tm, j  + R';  then  (/~n,i) ¢ L and G((/Tn#)) _< G((/~n,i)). 

For j = 1 it implies A m ( & . , # ' ) ( R  ') <_ p(R'),  for j = 2 it implies 

A ~ ( & . , p ' ) ( R  ') >_ - p ( R ' )  or [Am(&.,p)(R')[  <_ p ( R ' ) . e .  Let E = S(R)  and 

0 _< x < AR. For R '  = A - i x  it implies tha t  lAin(&., #)(x)l <_ p(x) • c. The  set 

{0 _< x _< IT, x < AR for some A > 0} is weakly dense in {0 < y < E},  so the 

es t imate  above is t rue  for all 0 < x < E.  It  follows from compar ing  G((&/~n,i)) 

a n d  G(([~n,i)) t ha t  p(E) > 1 - ¢--1[[p[[. 

By the theorem of Kovacs and Sziics [9], the sequence A,~(~,, #) converges in 

the norm in space ~ ,  to functional  #. Let us show tha t  there is a dense subset  

£ in the space of normal  hermi t ian  functionals ~ , h  for which 

(2) sup I(An(&., #) - f~)(x)/p(x)] -~ 0 when n ~ co. 
=Em+ 
z#O 

Let U = {it e 9X.+,II#II < 1 ,p  < Apfo r  s o m e A  > 0}. For # E  U t h e r e  exists 

y • Krt~_, y <_ ~ such tha t  It(x) = (yxfl ,  f~) [3]. So 

An(a . ,  #(x))  = #(Anx)  = (y .  Anxgt, ~) = (An(& ', y )x~ ,  ~).  

From &.-invariance of p it follows tha t  # _< Ap and there exists ~ E 93t r with 

#(x)  = ( ~ x ~ , ~ ) ;  x E fife. Let  yn = Y - A n ( 5 ' , Y ) + f l  and #~(x) = ( y n x ~ , ~ ) ;  

then  for x C 9Jt+ 

i(Ak(&., #n) - #)(x)[ = I(Ak(& ', (y - yn) )x f l ,~) l  <_ - -  
2nllYlI  

since 

IIAk(a' ,Y - Yn)llo~ <_ - -  
2nl[Yll  

Moreover,  

[ I / z n - # [ l l =  sup I ( f j -  A~(&' ,y ) ) . xg t ,  fl)l = l i A n ( d . , i t ) -  #]117  0 
=Era 

l lx l loo~l 

when n --* oc. So £ = {Pn - u~ : p _< Ap, v _< Ap, A > 0, # , u  E ffJt.+} is dense 

in norm in the set of all normal  hermi t ian  functionals. 

Proof  of  Theorem 2.2: There  exists a self-adjoint posit ive opera to r  B affiliated 

with algebra M and T-integrable with modulus  such tha t  p(x) = 7(Bx) ,  x E 
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M.  We will identify normal  functionals on M and normal  functionals on 9)I. 

Let us show tha t  there exists function "~(c~) such tha t  for every pro jec tor  E E 

M inequali ty p(E) <_ ~ implies T(E) _< ~/(~) and 3'(c~) ~ 0 when a ---, 0. 

Consider unit  ball M1 with metr ics  pl(X,  y) = fl((X -- y)*(X -- y))  and TI(X, y) = 

T((X -- y)*(X -- y)). By the theorem [3], faithfulness of p and ~- on M implies 

tha t  topologies genera ted by metr ics  Pl and ~-1 coincide wi th  s t rong topology 

and the metr ics  are equivalent.  Existence of function 3'(c~) is exact ly  equivalence 

of dis tance f rom zero to pro jec tor  E.  

Fix e > 0. Let  {# j}  be a sequence of normal  functionals satisfying (2) and 

(3) I I # -  ]~jll < 4-J . Tj, j = l , 2 , . . . ;  Nj 

be natura ls  such tha t  

sup I(A~(c~., P j + l ) -  ~ j + l ( X ) ) l / P ( x )  ~ 4-J-2"yj  
x6M+ 
x#O 

for n > Nj ,  

where #j  is a I1" Ill-lira A s (a . ,  #j) ,  existence of the limit follows from the Kovacs -  

Sziics theorem,  7j = m a x ( 7 - 1 (  ¢" 4 - J ) ,  1), and 7-1(ct)  is the inverse funct ion 

of % 

By applying Theo rem 2.3 to the functional  t t - p j  with e' = 4-J',/j and N = Nj,  

there exists a pro jec tor  Ej with p(Ej)  > 1 - "/j such tha t  

sup 
xCEjM-t-E j 

zOO 

I A ' ( a . , #  - p j ) ( x ) l / p ( x  ) < 4 - j .  

Moreover,  going to the limit in norm of M in (3) implies lip - #j]] _< 4 - J7 ;  so 

there exists Fj with p(Fj) > 1 - 7j and 

sup 
xeFjM+rj 

x¢0 

- <_ 4-J-'. 

Let E~ = Ej  A Fj. Then  7-(E~) >_ 1 - T((lI -- Ej)  V (]I - Fj))  > 1 - 2 - ¢ .  4 - j ,  since 

T(]I-Ej)  < ¢.4 - j  Let E '  = Aj  E~. Then  7 ( I I - E ' )  _< ~J~-j=l T(II--Ej)  G 2¢/3. Let 

F '  = {A -1 < B _< A}, A > 1, A such tha t  T(F')  > 1 - ¢ / 6 .  Then  for E = E ' A F ' ,  

r ( E )  > 1 - ¢. Fix  5 > 0, 6 < 1 and N = I lOgl /46.  A-11 + 1. Let  j be such tha t  

Nj < N _< Nj+I ,  n > Nj+I .  Then  

sup 
~6EM+E 
z¢O 

I (A~(a . ,  p) - #)(X)I/T(X) 
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(4) 

< sup [ ( A ' ( a . , t t -  ~j )  - ( p -  p j ) ) ( x ) l / r ( x )  
x 6 E M + E  

x#o 

+ sup [ A n ( o ~ , , p j ) - p j ) ( x ) l / 7 - ( x )  
~EEM+E 

x#O 

< sup I(An(O~,, tt - Itj) - (p  - f t j ) ) ( x ) l / p ( x  ) " sup p ( x ) / ' r ( x )  
~EEM+E z6EM+E 

x#O x#O 

+ sup I ( A ~ ( a . , . ~ ) - p ~ l ( x l l / p ( x )  sup p(xl /~(x)  
z6EM+E xEEM+E 

x#0 x¢0 

<4 - j .  sup p(X) /T (X) .  
~EEMq_E 

x#O 

Taking  into considerat ion tha t  0 < x < E we have p ( x ) / T ( x )  = 7 ( B . F ' x ) / w ( x )  < 

7 ( A F ' x ) / T ( x )  < A. So (3) does not exceed 4-JA < ~ by the choice o f j .  T h e o r e m  

2.2 is proved. 

Cont inua t ion  o f  p r o o f  o f  T h e o r e m  2.1: By Theorem 2.2 there exist projectors 

Pj  and  na tura l s  N j  such tha t  T(E1 -- P j )  < 5j and 

sup I ( A ' ( a . , I t )  - P) (x ) l /w(x )  < ¢/10, when n > Nj ,  j = 1 , 2 , . . . .  
xEPjM+Pj  

x#O 

Let Y, Y E L I ( M I E  ,, T) be self-adjoint opera tors  such tha t  T ( Y x )  = It(x) and 

7 ( Y x )  = # ( x ) , x  E M I ~  I ( r emember  tha t  p is a ] l  II1 - l i m A " ( a . , i t )  • Then  

sup 
=eejM+ej 

x#0 

I(A,~(a~., tt - p ) ( z ) l / r ( z )  

=- sup 
.eejM+ej 

= sup 
~eejM+Pj 

z#0 

= sup 
x e P j M +  Pj 

x#O 

= sup 
z*EPjM 

Z*~£O,x:Z* Z 

I(it - ~)(An(cq,  x)) i /v(x ) 

I v ( (Y  - ? ) ( A n ( a 1 ,  x ) ) ) i / v ( x )  

Ir((A~(a~, Y) - Y )x ) l / f f x )  

[((An(a'I, Y)  - Y)z  *~o, z *~o)i/(z*~o, z *~o) 

sup I(A,~(a~,Y) - Y ) ~ , ~ ) )  = ILPj(An(a'~,Y) - Y))P j l I~ .  
~IE PI H 
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Let An(a',  Y )  - Y = B. ,+ - Bn , - ,  S(B,~,+) . S ( B n _ )  = O. 

Let Fn,j = E1 - S(Bn,+) - S ( B n - )  + S(Bn,+)  A Pj + S (Bn ,_ )  A Pj. Since 

T(S(B ,+)  A Pj) < 7(S(Bn,:t=)) - 5j then T ( f n , j )  ___~ 1 - 25j. Moreover, 

IIFn,y(A,~(~, Y) - ?)Fn,jIIL 

= I l F n , j ( A n ( o l i , Y  ) - ~ ' ) [ S ( B n , - ] - )  A P j  ~- S ( B n - )  A P j  

--~ (~r - S ( B n , +  ) - S ( J ~ a _ ) ) ( A n ( o l l ,  y )  - ~ ) F n , j  11~ 

>_ max{llF.,~,j(An(a~l,Y) - Y ) S (  B . ,+)  A PjIIL; 
[IF~,j(d~(a', Y )  - f ~ ) S ( B , ~ _ )  A P j l [ ~ ;  

] IF ,~ , j (A . (a i ,  Y )  - ~)(][ - S ( B n , + )  - S(Bn,-)ll~} 

= max{I tFn, jBn,+Fn, j l l~ ,  tIFn,~B~,-F~,j II~}, 

where inequality is valid because ItC + V + ~lIoo >_ max{}lcl]oo, IIVlloo, Ii~]loo} 

for C, D, E > 0 and the next equality is valid because 

IIFn,j(A.(a' l ,  Y )  - t ) S ( B . , ~ : )  A P i l l5  = I[F,~,j(B,~,+ - B.~,_)S(B,~,~:) A PjII~ 

= ] l f n , j B n , ± S ( U , , , + )  A P y l I L  

= 11 F,,,j B,~,. F,,,j I I~- 

Let Ei, .  = q~,~ A Qi,. + F.,i  h Qi,n, where projectors Qi,n will be chosen later. 

Then 

sup I(E~,n(An(a ', C) - Y)E~,,,£,~) I 
5EH 

(5) 

5 sup I(qi,nE2(A'~(a ', C) - Y')E2qi,,~, ~)1 
~EH 

11,~11<1 

+ sup [(Fn, iEx(An(a ', C) - ?)E1F~,~5,5)I 
~EH 

It,~11<1 

+ sup ]((qi,n A Qi,nA~(a' ,C)F,~,i  + Fn3An(a' ,C)qi , ,~ A Q~,n)L~)I. 
~EH 

IKI [<I  

The first term of inequality (5) does not exceed 

sup 
~EH 

!1,~{1_<1 

n ! I(ql,nA (a2, B)qi,n~, ~)1 < ¢/10 
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and tends to 0 when n --* ~ .  The  second t e rm  of (5) does not exceed 

sup 
~EH 

I ( F n , , ( A n ( ~ ' ~ , V )  - ]V)Fn,,~, 5)1 < e/lO 

and tends to 0 when n ~ ec. Let  Qi,,~ = {An(a  ', C) _< Ai,,~}, where Ai,n _> 0. 

Since T(Q~,n)i <_ A~,~-I. T(C),  the choice A<n > 7 ( C ) / ~  implies ~-(Q~,~) _> 1 - 51. 

Then  
gi,~ A Qi ,nAn(a ', C)Fn,i A Qi ,nAn(a ', C)gi,n A Q~,n 

<_ gi,~ A Q~,nAn(c~ ', C)Qi ,nAn(a  ', C)gi,n A Qi,,~ 

<_ A~,ng~,n A Q~,nAn(o/, C)g~,n h Q~,n 

< A~,ng~,~E~An(c~ ', C)E~g~,,~ = A n , 
_ , ~,~gi,,~A (a S, B)gi,~, 

SO 

I[gi,n A .~i,nn A'~tv~ , C)F~,,~ A Q~,nt{o~ _ ((~i,nan,i) 1/2. 

Thus  the left pa r t  of (5) does not exceed a~,~+b,,~+2(~,nan#) 1/2. Fix i. The  esti- 

ma te  on Ai,n depends only on i while bn,i, and a,~,i tend to zero 

when n ~ oc, so there exist na tura ls  K~ such tha t ,  for n > Ki ,  the es t imate  

an,i + bn,i + S()%nan,i) 1/2 < ~ is valid. I t  is possible to assume tha t  Ki  increase. 

For n e [Ki, K i+ l ) ,  

I IE~ ,n (An(cg ,  C )  - "?)E~,nl[~ < 

and 

7(Ei,~) = T(q~,n A Qi,n + F,~,~ A Qi,n) > 1 - 4~i 

hold. 

Let  P~ = {IAn(a ' ,  C) - YI >- 5e}. Then  

5e.  P~ _< [ A n ( a ' , C )  - YI 

2 .  E~,~. IA,~(o/, C) - ~IE~,~, + 2(]I - Eg,n)lAn(o/ ,  C) - ~[(lI - E~,~) 

_< 4 e e ~ , ~  + 2(~ - e~, ,~)]An(~',  C )  - ? [ ( ~  - e~ ,n ) .  

By the l e m m a  7-(P~) _< 1 - T(Ew~ ) <_ 4~.  | 
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3. C a s e  o f  d c o m m u t i n g  a u t o m o r p h i s m s  

Let us consider the case of d-commut ing  automorphisms.  Let d > 1 be a nat-  

ural number  and V = {0, 1, 2 . . . .  }d be an additive semigroup of d-dimensional 

vectors with natural  coordinates.  For u = (ui) ,v  = (vi) E V, relation u _> v 

(u > v) means ui >_ vi (ui > vi) for i = 1 . . . . .  d. By [ u , v [ w e  denote the set 

{w E V : u  < w < v}. For a f i n i t e s e t  B l e t  card (B) or [B[ mean  the number  

of elements of B. For n (nl, r id )  E Y let ;r(n) d . . . . .  = H . = l n ~  = I[0, n[[. For 
n E V and operators  Zl , /32, . . . , /3d let /3, ---- t3~'/3~ 2 . . . ~ ;  Sn : ~uE[0,,[/3~; 

A~ = ; r (n ) - lS~ ;  expression n --~ oc means tha t  n ,  tends to infinity indepen- 

dently for u = 1, 2 . . . .  , d. Let c~1, a2 , .  • . ,  C~d be au tomorphisms  of algebra M.  

Opera tor  h E M~_ is called weakly wandering if []A,h]]oo --+ 0 when n ~ oo. 

A multisequence {Xn}nEV of measurable operators  affiliated with M is said to 

converge stochastically to  operator  X0, if for every e > 0 7-({IX~ -X01  > ¢}) --+ 0 

holds when mult i index n --+ oo. 

THEOREM 3.1 (see [10]): Let O~l,OZ 2 . . . .  ,o~ d be commuting automorphisms on 

von Neumann algebra M with faithful normal finite trace 7. The following 

conditions are equivalent: 

(i) There exists an a.,i-invariant normal state p on M with suppor t  E such 

that the support of every a.,i-invariant normal state does not exceed E 

( i = l , 2 , . . . , d ) .  

(ii) There exists a weakly wandering operator ho E M+ with support ~ - E 

such that the support of every weakly wandering operator does not exceed 

~ - E .  
d 

Moreover E = h i : l  Ei; ] I -  E = vd : , ( ] [  - Ei), where Ei is the "maximal" 

support of the invariant normal state of the automorphism hi, i = 1, 2 , . . . ,  d. 

Proof: Let E1 E M be the "maximal" support  of an ~l- invar iant  s tate  p. Then  

algebra MIE 1 is oz 1 invariant, i = 1, 2 , . . . ,  d. Let us show first tha t  the suppor t  

of the normal  component  of every a ( M * ,  M)  limit point  of the set {An#)n°°=l 

where # E M + ;  #(][) = ~, S(#) = ~ is equal to E l .  Indeed, let e _< E1 be a non 

zero projector  from M, p(e) = a > 0. Let A > 0 and let v < A# be a n o r m a l  

functional with l i p -  vii < a/2. Let #0 be a a ( M * ,  M)  limit point  of {A*~p}~=I 

and {n~} be a set such tha t  A * " , #  --) #0, A*"~v --. Vo, where v0 E M~,  and 

let v0 = v0, + v0s be a Takesaki decomposi t ion of functional  Vo on normal  and 
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singular components .  Then  

l lp-~olI ,  ~ limsup [IA*'~(P - ~)II ~ l iP-~II ,  < a/2. 
n-( 

There  exists [15] a projector  such tha t  e' < e, e' E M,  p(e') > 3/4a, vo,(e') = O. 

Then ,,o.(e') = ~o(e') _> p(e')-71p-~oll  > a/4 or ~o~(~') _> ~-1~o~(~') > ~-la/4 
since relation ~o ~ ,~-~z,o implies ~o,  _> ,~-~vo,, [15). Arbitrariness of projector  P 

implies tha t  ~on is faithful on E I M E ~  or S(~o, )  >_ El .  It follows from maximal i ty  

of E~ tha t  S(~on) = E~. 

Fo r /~  E M,  we have 

(6) ((~#0)(/~) = l im((~A*n~#)(/~) = l im(A*n"(~#)( /~) .  

Functional  a~#  is faithful and normal  because # is faithful and normal.  So 

the normal  component  of a~.Po has support  E l .  Then  a2(][ - E l )  = 1[ - E1 

because (a~#o~)(][- El )  = 0, so 0 = Ela2(l[ - El)E1; IIEla2(][ - E1)EI l I~  = 

Ila2(l - E1 )EIEI l I~  = 0 and a2(][ - E l )  = (][ - E1)(~2(l[ - E1) ( ] [ -  E l )  = II - E l .  

Thus  MIE 1 is c~i invariant for i = 1, 2 . . . .  ,d. Relat ion (6) implies also tha t  

functional  a ,2#on is a ,1  invariant. Let us show tha t  there exists an a,~-invariant 

normal  s ta te  with suppor t  not  less than Ad=, El. Let e _< Aid1 E~, e ~ 0. Then  

inf T(EI(EI(~2E1) n (e)E1) = inf 7(a~e) > O, 

and an analogous relation holds for every e' _< e, e' ~ 0. By Theorem l(ii) there  

exists an (El(~2E1),-invariant normal  s tate  on algebra E1ME1 with suppor t /~2  

such tha t /~2  >_ e and/~2 is "maximal"  in the sense of point  (i) of the theorem. 

By what  was proved above automorphisms E I ~ E ~  (i = 1, 2 , . . . , d )  leave /~2 

invariant, so all considerations can be extended on algebra/~2M/~2. Relat ion (6) 

also holds if we change E1 to/~2 and a2 to a3. Repeat ing the procedure  one gets 

an F,d_ladEd_l-invariant normal  s tate  with support  /~d >_ e; projector  /~d is a~ 
d 

invariant (i = 1, 2 , . . . ,  d). Arbitrariness of e _< A E~ implies the proposit ion.  
i----1 

Let h~ be a weakly a~-wandering opera tor  with "maximal"  suppor t  

(i = 1 , 2 , . . . , d ) .  Then  for n = ( n l , n 2 , . . . , n d )  

[IAnh~ll~ = [ I A ~ I A ~ . . . A : ~ A : ~ h ~ I I ~  <_ IIA~hi l[~ -+ 0 when n --+ co. 

Let h = d -1 d ~i=~ hi. Then h is weakly wandering and S(h)  = Vd=l S(h~) = 
d Vi=~(][ - E~), since by Theorem l(iii) one has S(hi)  = ][ - Ei. | 
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THEOREM 3.2 (Stochastic mul t ipa ramet r i c  ergodic theorem):  Let  ai  be auto- 

morph i sms  o f  yon N e u m a n n  algebra M wi th  f inite normal  s ta te  T, i = 1, 2 . . . .  , d. 

Then  for X E L I ( M ,  ~-) averages A , n X  converge s tochast ical ly  to f (  6 L I ( M ,  r ) ,  

where n = ( n l , n 2 , . . . , n d ) .  Limi t  f (  is a , i  invariant and F , f ( E  = O, where 
d 

= V i = l (  - E~), and E~ projec tors  were cons truc ted  by Theorem 3.1. 

The  proof  of the theorem is based on the following theorem.  

THEOREM 3.3 (see [17], [12], [5]): Let  M be a yon N e u m a n n  algebra  with  normal  

tracial s ta te  T and ai  be au tomorph i sms  o f  algebra M ,  i = 1 , . . . ,  d; p is a fai thful  

normal  ai- invariant  (i = 1 , . . . ,  d) s ta te  on M .  Then  for every p C M ,  there exis ts  

an a~-invariant funct ional  p such that  for every  ~ > 0 there exis ts  pro jec tor  

E 6 M ,  r ( E )  > 1 - ¢; moreover  I IA,~p - #111 --~ 0 and 

sup I (A,n# - # ) ( x ) / r ( x ) l  ~ 0 when mul t i index  n --~ oz. 
wEEM.}_E 
x¢O 

Let Pi be a map u --* limk-~oo Ak, W. Map Pi is a projection on the set of ~,i 

stationary points and 

# = Pd " P d - l  " "  P l# .  

Proo~ For d = 1 the s t a t emen t  of the theorem coincides with Theo rem 1.2. The  

induction steps are based on the following est imates .  Fix e > 0. There  exists 

mul t i index ( N a - ~ , . . . ,  N J ( J )  such tha t  for n > ( N a - 1 , . . . ,  N J  (j) 

I]A*~d(A,(n~_, ..... ~ ) P d - I P d - 2 . . . P I # ) I I 1  < 7j ,  

where 7j are defined in Theo rem 2.3. There  exists pro jec tor  E (j) such tha t  

and 

r(E (5)) > 1 - ~. 2 - J  

sup IA*nd(A,(nd_l ...... ~)# - P d - l ' . . . P l p ) ( x ) ] / r ( x )  < 2 - j .  
zq E(J ) M+ E(J ) 

x#O 

By Theo rem 2.3 there exist Nd and projector  E (°) such tha t  ~-(E(°)) > 1 - ¢/2,  

and for n > Nd 

sup 
xcE(O) M_i.E(O) 

x#O 

IA.nd (Pd-i"" PI~) - PalPal-l"'" Plp)(x)l/r(x) < 5/2. 
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Let E = / ~ ° °  EJ T h e n r ( E ) > l - ~ = o r ( E ( J ) ) > l - e a n d  
j = O  " - -  - -  

Isr. J. Math, 

sup I(A,(na . . . .  1 ) [  1 - -  P d "  "" P l l 2 ) ( X ) / T ( X ) I  
x E E M + E  

< sup I(A.n~(A.(n~_l .... ~ ) # - P d _ , . . . P l p ) ( x ) l / r ( x  ) 
zEEM_{_E 

x # O  

+ sup I ( A . ~ e ( P d _ I . . . P I # )  - P d ' ' ' P l p ) ( X ) I / r ( x )  
w6EM+E 
x#O 

< 5, 

when j > [log 2 5-1/2I  + 1 and n > (Nd, ( N d - 1 , . . . ,  N1)(J)).  | 

The proof of Theorem 3.2 is similar to the proof of Theorem 2.1. 

4. Superadditive stochastic ergodic theorem 

Let U be a set of all non empty intervals [u, v[; u, v 6 V. For I 6 .T and w 6 V 

let l + w = [u + w, v + w[. 

Definition 4.3: (see [10], [1]) The superadditive process with respect to auto- 

morphisms a l ,  a 2 , . . . ,  OLd is called function F: ~" 9 I ~ FI 6 M.h, where M.h  

is the set of all hermitian normal functionals on von Neumann algebra M with 

the following properties: 

(i) Fi o a (n) = Fl+n for I 6 ~-, n C V; a n = aln~ . . .  ad~d., 

(ii) for non-intersecting sets Ia , /2 , /3  = I1 U/2; /3  E :T, we have 

FI3 > FI1 + FI~; 

(iii) constant 7(F)  = sup((card(I ) ) - lF1( l l ) )  < oo. 

The following theorem is valid: 

THEOREM 4.1 (see [10], [1]): Let  M be a v o n  N e u m a n n  algebra with faithful 

normal tracial s ta te  T. Let  also a l , . . . ,  ad be automorphisms of algebra M and 

F1 be a superaddit ive process with respect to a l , a 2 , . . . , a d .  Then  F[0,n[ = 

(card([0, nD)-IFE0,< converge s toch~t ica ly  to a i .  invariant runctional & ,  when 

mul t i index  n ~ oo. 

The proof of Theorem 4.1 is based on the following statements. 
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THEOREM 4.2 (see [17], [5]): Let  M be a yon N e u m a n n  algebra with faithful 

normal tracial s tate  "r and let a l ,  • • . ,  ad, FI, Fo be the same as above. A s s u m e  

that  there exists a faithful normal s tate which is a,,.-invariant (i = 1 . . . .  , d). 

Then  F[o,n[ converges to Fo in the norm of  the space M. .  

The  finite subset k {Ie}e=l C jz  is called admissible if there exists a rearrange- 

ment  P of { 1 , . . . ,  k} such tha t  each ( ( . . .  (Ip( U [2 IP(2)) kJ [P(3)) t2 . - .  U Ip(e)) is 

in .~. Note tha t  for an admissible subset {I~}~=1 proper ty  (ii) implies 

k 

F ~  _> ~ F I ~ .  
U I~ g=l 

Finite  subset {Itm(J-~),~JI}, J c [o, n[, where m E V and m j  = ( m l j l  . . . .  , mdjd); 

m = ( m l , . . . ,  rod), j = ( j l , - . .  , jd),  is admissible. For interval I[o,,~[ we can find a 

finite subset k k {I~}~=2 such tha t  I[o,~[U[.J~=2 Ie = I[o,m[ and the set {I[o,n[, {Ie}ek_-2} 

is admissible. Let n! be a mult i index ( n ! , . . . ,  n!) and ~1 be a limit in the norm 

M.  of A~(Pl )  when n ~ c~. Let  us show that  F[O,n![ increases. Indeed, from (ii) 

it follows tha t  

(7) FEo,< > . ? - 1 ) , ,  . . . .  Old r [O,(n-- I)! • 
o_<ij <~ 

j=l, . . . ,d 

Applying Ak to bo th  sides of (7) and tending to the limit in norm M.  when 

k ---, oo, one gets 

F[o,n,[ ~ ~ F[o,(n-  1),[. 
O<_ij<n 

j=l, . . . ,d 

Let us show now tha t  if F is a non-negative superaddit ive process (or FI > 0 

for all I e 5c), then l imn_.~ F[o,,~[(ll) = 7 (F ) .  Indeed, fix e > 0, k such tha t  

f'[o,k[(~) > 7 ( F )  - e/2.  Let n be such tha t  

(card([O, nD)-lcard([O,  [m/k]k D > .y', 

where 7'  = 1 - c /2(max{1,  7})-1;  In~k] = ([n/kl], [n /k2] , . . . ,  [n/kd]). Then  

/~[o,n[(ll) > card([0, n[))-lF[o,[n/k]k[(~) 

> card([0, nD)- lca rd( [0 ,  [n/k]k D • f'[0,[n/k]k[(~) 

> (1 - c/2)( 'y - c/2)  > "~ - c; 
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here every inequality is valid because all the indexes are admissible. 

We now show that Theorem 4.1 is enough for the proof for a non-negative 

superadditive process. Indeed, 

i l  
c a r d ( [ O ,  k D )  - 1  ~ OL 1 . . .  OldaF(o ..... O) --~ /~(0 ..... O) 

i~[o,k{ 

/ lil " stochastically. Consider F~ = F / -  ~ / c z  a j  . . .  Ctd~F(o ..... o). Then F(o ..... o) = 0 
! lid ! and F~ > ~ e l  a'l h ' ' ' a d  Fio ..... o) = 0. Note also that stochastical convergence 

o f / ~  is equivalent to stochastical convergence of Fz. Assume that Fz is a non- 

negative superadditive process and ~ > 0. Fix n C V such that /~[o,~![(]I) > 

~/(F) - ~. Let t% =T - limk~oo/~[0,k![. Then 

ro(~) = ~(f)  and I1~(o,~(- Foil = ~o(~)- f[o,<(~) < ~. 

Let ko E V such that for k > ko and k E V, 

(card([0, kD)-lcard([i ,  ( [k /n!]  - 1). n! + iD > 1 - ~ for all i e [0, n![ 

holds and F'[o,k[(lI) >_ 7 -- ~. Let kl be such that for k > kl, 

~ 

] ] A ( [ k / n ! ] ) n ! ( f [ o , n ! [ )  - /~[0,n![ l l l  --~ C 

holds. Then for k > max{ko, kl} the following inequality is valid: 

(8) 
JIf'io,~i- ~oH1 

_<(card([0, n!D) -1" ~ ]]['[o,k[- (card([0, [ k . n ! ] -  1[)) -1 
iE[0,n![ 

Z ~'1 ' ~ ' ' ' "  ~n'J~(~"rE°,<)ll~ + IIA(E~/~'D~'Ft°,<- ~to,<lll 
j e [O, [k /n ! ] - - l [  

+ II~t0,~E- $o11~. 

Let us estimate each term on the right side of (8). By the choice of n the last 

term does not exceed ~, and by the choice of k the third term does not exceed E. 
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For the first t e rm we have: 

(F.T.)  _<(card([O, k[))-~llFto,k[ - 
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jE[O,[k/n!l-l[ 
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where the second inequality follows from the possibility of admissible extending 

of {F[jn!+i,(j+l)n!+~[} where j E [0, [k/n!] - 1[ up to set [0, k[ and from the non- 

negativi ty of the superaddit ive process; the last inequality follows from the choice 

of k. Thus (8) does not exceed 2e + 4e'T. | 

P r o o f  o f  Theorem 4.1: Similar to the proof  of Theorem 3.1. 
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